Isometry invariant permutation codes and mutually orthogonal Latin squares
نویسندگان
چکیده
منابع مشابه
Some Constructions of Mutually Orthogonal Latin Squares and Superimposed Codes
Superimposed codes is a special combinatorial structure that has many applications in information theory, data communication and cryptography. On the other hand, mutually orthogonal latin squares is a beautiful combinatorial object that has deep connection with design theory. In this paper, we draw a connection between these two structures. We give explicit construction of mutually orthogonal l...
متن کاملMore mutually orthogonal Latin squares
A diagonal Latin square is a Latin square whose main diagonal and back diagonal are both transversals. In this paper we give some constructions of pairwise orthogonal diagonal Latin squares. As an application of such constructions we obtain some new infinite classes of pairwise orthogonal diagonal Latin squares which are useful in the study of pairwise orthogonal diagonal Latin squares.
متن کاملMaximal sets of mutually orthogonal Latin squares
Maximal sets of s mutually orthogonal Latin squares of order v are constructed for in nitely many new pairs (s; v). c © 1999 Published by Elsevier Science B.V. All rights reserved
متن کاملPermutation polynomials induced from permutations of subfields, and some complete sets of mutually orthogonal latin squares
We present a general technique for obtaining permutation polynomials over a finite field from permutations of a subfield. By applying this technique to the simplest classes of permutation polynomials on the subfield, we obtain several new families of permutation polynomials. Some of these have the additional property that both f(x) and f(x) + x induce permutations of the field, which has combin...
متن کاملMutually unbiased bases, orthogonal Latin squares, and hidden-variable models
Mutually unbiased bases encapsulate the concept of complementarity—the impossibility of simultaneous knowledge of certain observables—in the formalism of quantum theory. Although this concept is at the heart of quantum mechanics, the number of these bases is unknown except for systems of dimension being a power of a prime. We develop the relation between this physical problem and the mathematic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Designs
سال: 2019
ISSN: 1063-8539,1520-6610
DOI: 10.1002/jcd.21661